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ABSTRACT

A general, finite element formulation of resonant field be-
havior is presented. The formulation uses the magnetic vec-
tor potential A and time-integrated electric scalar potential
¥ as solutions variables. Two types of physical modes are
found. “Microwave” modes with nonzero A and ¢ compo-
nents represent ordinary, high-frequency resonant behavior
in the presence of inhomogeneous, anisotropic dielectrics.
Because the time-integral of the scalar potential is used,
“clectrostatic” modes are found at zero frequency with only
b components. Unphysical “spurious” modes are eliminated
using a modal transformation method—in a way that does not
affect physical solutions. The capability is demonstrated with
two ezamples.

INTRODUCTION

The numerical analysis of electromagnetic fields under
resonant conditions is an important tool in the design of
many microwave devices, including dielectric-loaded wave-
guides and cavities. Finite element and integral equation
methods have been reported, which use both fields (1,2)
and potential functions (3) as solutions variables. Often,
TM and TE must be treated separately (3,4). In addition,
most methods suffer from unphysical, “spurious” mode prob-
lems; though recent attempts to suppress these modes have
achieved some success (4,2). We present a new finite element
capability for analyzing the resonant properties of cavities
and waveguides based on potential functions. This formula-
tion obtains all modes with a single analysis, and does not
suffer from spurious mode problems.

THE FORMULATION

The objective of resonant field analysis is to calculate the
distribution of electric and magnetic fields, E and B, under
resonant conditions. The fields themselves are not conve-
nient solution variables; because they are often discontinu-
ous (for example, when sources are present). Thus potential
functions are used to describe the magnetic field:

B = VxA. (1)

1107

CH2870-4/91/0000-1107$01.00 © 1991 IEEE

To treat the general case, the time-integral of the electric
scalar potential is added (5):

B=-vj - A (2)
Use of the time-integrated scalar potential assures that the
final matrix equation will be sparse, banded and symmetric.
This formulation has been incorporated into a general pur-
pose electromagnetic field analysis program, MSC/EMAS.

To obey Maxwell’s equations, discrete values of Aand ¢
at predetermined grid points (degrees-of-freedom, or DOFs)
must obey the following matrix equation (5):

MAA | MAY /T pAA | gAY A‘
{MwA Mww] 5 + [BwA wa} -

R - o

This matrix equation is equivalent to Maxwell’s equations
in their complete and general form. The [M], [B] and [K]
matrices represent dielectric, conductivity and permeability
properties, respectively. Materials may be anisotropic; and
in the case of magnetic materials, nonlinear. The column
vector {u} represents unknown A and ¢ DOFs. The excita-
tion vector {P} is not used in resonant analysis.
An initial condition is also generated:

M1} = {p} + {Doormat} — [MPHAY,  (4)

where {p} represents charge density; {ﬁmmal} represents
Neumann boundary conditions; and {/_1'*} represents an ini-
tial, divergence-free field distribution. This initial condition
is just Gauss’s law for electrostatics in matrix form.

Use of the vector potential brings with it some mathe-
matical difficulties. It is well known that Maxwell’s equa-
tions determine only the curl part of A. Other parts, such
as the divergence of A, are undetermined. In numerical
calculations these undetermined parts produce a singular
[K] matrix. For the particular case of eigenvalue analy-
sis, singular [K] produces a large number of spurious modes;
modes with near-zero frequencies that cannot be easily dis-
tinguished from physical modes (6). Divergence singularities
are removed by adding a penralty energy (7); so that [K] is
the sum of two parts:
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(K o (V x A)- [v)(V x A), (5)

[K¥] « av(V - A)% (6)

where the penalty parameter « is dimensionless. In a “weak”
mathematical sense, the penalty energy requires the solution
to satisfy the Coulomb gauge. In terms of modes, the penalty
energy shifts divergence modes to higher frequencies.

Ideally, the divergence and curl parts of A are uncoupled;
so that physical (curl) solutions are not affected by the choice
of a. Due to practical element limitations, there is a weak
coupling (less than one part in 107) between divergence and
curl. This produces a small, unpredictable increase in the
resonant frequencies of physical solutions with increasing o.

Use of the time-integrated electric scalar potential has
an odd consequence; electrostatics is represented by a dy-
namic process. The initial potential ¢ is determined by
the initial condition, Eq. (4). Subsequent behavior is deter-
mined from solutions to the dynamic matrix equation, Eq.
(3). Under electrostatic conditions (A =0, [B] = 0), the ini-
tial distribution of %) remains unchanged; so the conventional
electrostatic potential ¢ = ¢ is a time-independent function
of position (as expected). This behavior has a significant
effect on resonant analysis.

EIGENVALUE SOLUTIONS

With no conductivity ([B] = 0), no excitations ({P} =
0), and assuming e“* time dependence, Eq. (3) reduces to
an eigenvalue problem:

[—wiM + K {&}=0. (7)

In bounded problems, solutions are obtained only at discrete
eigenvalues w?. The associated eigenvectors {{,} are real.
When inhomogeneous dielectrics are present, the eigenvec-
tors must contain both A and ¥ DOFs in order to account
for the effects of electrical charge. Because potential func-
tions are used, there is no distinction between TE, TM and
hybrid modes; all mode types are obtained in a single calcu-
lation.

Electrostatic behavior is included in resonance problems
when ¢ DOFs are present. “Electrostatic” modes appear
at exactly zero frequency; with all A DOFs equal to zero.
These modes are orthogonal, linear combinations of electro-
static solutions of the matrix equation, Eq. (3); one mode
for each unconstrained ¥ DOF in the model. It must be
emphasized: these are not “spurious” modes. They repre-
sent real, physical behavior. Since electrostatic behavior is
not of interest in microwave devices, these modes are usually
ignored.

The mode spectrum is shown schematically in Fig. 1.
Many “electrostatic” modes are present at exactly zero fre-
quency. Conventional high-frequency behavior is represented
by “microwave” modes, in which both ¥ and A are nonzero.
The frequency of these modes is determined mainly by so-
lutions to Maxwell’s equations; but can be changed by very
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Figure 1: The mode spectrum in resonant analysis involves
three types of modes: “electrostatic” modes, “microwave”
modes and “divergence” modes.

large values of the penalty parameter. “Divergence” modes
represent nonphysical behavior at higher frequencies associ-
ated with the divergence part of A. The frequencies of these
modes increase roughly as the square root of the penalty pa-
rameter. The grouping of modes into these three main types
is thought to be general; and, apparently, occurs in all real
eigenvalue analyses based on this formulation.

THE MODAL TRANSFORMATION METHOD

To be useful, the physical solutions of the eigenvalue
problem, Eq. (7), must be: 1) easily distinguished from spu-
rious solutions, and 2) must be independent of the penalty
parameter. This is accomplished using a modal transforma-
tion method (8). First, “microwave” solutions to Eq. (7),
{é.}, are determined. These modes are not adequate solu-
tions; because their frequencies depend slightly on «. How-
ever, they are ideal basis functions for expanding the actual
solutions because they are divergence-free. The actual solu-
tions {u} are expressed as a sum of “microwave” modes;

{u} = X a{énl. (8

This expansion is substituted back into Eq. (7), and the
resulting (very small) eigenvalue problem is solved for the
modal amplitudes g,. The eigenvalues are the same as those
of the original problem, while the eigenvectors are recovered
through Eq. (8). During this second solution, the penalty
parameter is set to zero. As a result, the final solution is
independent of «.

EXAMPLES

The first example, a dielectric-loaded waveguide, illus-
trates two-dimensional cutoff frequency calculations in inho-
mogeneous waveguides. The second, a spherical resonator,
demonstrates mode calculations in three-dimensions. The
first few modes of each model were obtained using a Lanc-
zos eigenvalue algorithm. Perfectly conducting boundaries
were simulated by constraining the tangent components of
A and 1 to zero. In all cases, ¢, = v, = 0; and the diver-
gence penalty parameter was 10*. Results were later scaled
to MKS values. Plotting and data recovery were performed
using MSC/XL, a graphic pre- and postprocessor designed
for electromagnetic applications.
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Figure 2: The electric field (a), vector potential (b) and scalar potential (c) in the HE,;; mode of a dielectric-loaded waveguide.

Three-Layer Dielectric-Loaded Waveguide

A three-layer dielectric-loaded waveguide consists of a cir-
cular guide (radius=1.27 cm) containing a hollow dielectric
rod (e = 37.6) in the region 0.4 cm < radius < 1.0 cm.
Approximately 450 6-node triangular elements were used to
represent the two-dimensional cross section.

The cutoff frequencies are shown in Table 1 for the first
ten modes. The error is also shown, relative to results pub-
lished by Lin, et. al. (9). In all cases, errors are less than
one per cent. Modes four and five are a degenerate pair of
physical modes not listed by Lin et. al

Results for the third mode, HE;,, are shown in Fig. 2.
The arrow plot of the electric field shows that E lies within
the plane; and is largest between the rod and the outer wall.
The hollow center also contains substantial electric fields.
For the same mode, arrow plots of A show little influence of
the dielectric. Instead, the effects of dipole charges at dielec-
tric boundaries are represented by the scalar potential, as can
be seen in the contour plot of 3. This is not surprising since,
under the Coulomb gauge, A represents divergence-free solu-

no frequency relative type
(GHz) error
(%)
1 76.35937 -0.71 HE{;
2 93.60601 +0.26 HE,,
3 93.60793 +0.26 HE,
4 131.5472 ?
5 131.7642 ?
6 156.4698 -0.37 HE;3
7 156.4715 -0.37  HEgs
8 157.7712 4042 HE;;
9 157.7132 +0.42 HE;;
10 163.7523 +0.36 HEq4

Table 1: Cutoff frequency, relative error and mode type for
the first ten modes of a dielectric-loaded waveguide.

tions to the wave equation, while 4 represents electrostatic
solutions.

Spherical Resonator

A 1 m diameter spherical resonator is modeled with 768
hexahedron and pentahedron elements connected to 795 grid
points. The resulting eigenvalue problem involved 1901 un-
constrained DOFs. The desired modes were extracted using
a VAX 6000 computer (7 MIPS) in 742 CPU seconds.

Table 2 shows the resonant frequencies for the first eleven
modes, error relative to theoretical results (10), and mode
type. Higher-order modes show reduced accuracy; because
the spatial dependence of the fields is more rapid relative to
the fixed mesh density. We do not know the nomenclature
for the eighth mode; but it resembles higher-order modes
found in cylindrical resonators (10).

no frequency relative type
(MHz) error
(%)
1 261.8659 +0.015 TM;e
2 265.1345 +1.26 TMio
3 2659924 +1.59 TM;pn
4 367.4110 -0.56 TMan
5 3704039 +0.25 TMan
6 373.885¢ +1.19 TMam
7 373.8854 +1.19 TM,y
8  375.0030 ? ?
9 4382904 4221 TEm
10 4389949 4238 TE»
11 4389949 +238 TEn

Table 2: Frequency, error relative to theory, and mode type
for the first eleven modes of a spherical resonator.
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CONCLUSIONS

A comprehensive resonant analysis capability has been
derived from a general formulation of finite element field
analysis. By using vector and scalar potential functions
as solution variables, the formulation can represent arbi-
trary geometries containing inhomogeneous, anisotropic di-
electrics. All mode types are obtained from a single analysis
without spurious mode difficulties. Two types of physical
modes are found. “Electrostatic” modes represent electro-
static behavior at zero frequency, while “microwave” modes
represent high-frequency resonant behavior. Spurious “di-
vergence” modes are shifted to still higher frequencies (out
of the range of interest) in a way that does not affect physical
modes. The primary applications are in the computer-aided
design of nonuniformly-loaded cavities and waveguides.

MSC/EMAS and MSC/XL are trademarks of The MacNeal-

Schwendler Corporation.
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