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To treat the general case, the time-integral of the electric

scalar potential is added (5):

ABSTRACT

A general, jinite element formulation of resonant jield be-

havior is pres~nted. The formulation uses the magnetic vec-

tor potential A and time-integrated electric scalar potential

+ as solutions variables. Two types of physical modes are

found. “&ficrowave” modes with non.zero A- and + compo-

nents represent ordinary, high-frequency resonant behavior

in the presence of inhomogeneous, anisotropic dielectrics.

Because the time-integral of the scalar potential is used,

“electrostatic” modes are found at zero frequency with only

+ components. Unphysical %purious” modes are eliminated

using a modal transformation method–in a way that does not

affect physical solutions. The capability is demonstrated with

two examples.

INTRODUCTION

The numerical analysis of electromagnetic fields under

resonant conditions is an important tool in the design of
~anY microwave devices, including dielectric-loaded wave-

guides and cavities. Finite element and integral equation

methods have been reported, which use both fields (1,2)

and potent ial functions (3) as solutions variables. Often,

TM and TE must be treated separately (3,4). In addition,

most methods suffer from unphysical, “spurious” mode prob-

lems; though recent attempts to suppress these modes have

achieved some success (4,2). We present a new finite element

capability for analyzing the resonant properties of cavities

and waveguides based on potential functions. This formula-

tion obtains all modes with a single analysis, and does not

suffer from spurious mode problems.

THE FORMULATION

The objective of resonant field analysis is to calc~~late the

distribution of electric and magnetic fields, ~ and B, under

resonant conditions. The fields themselves are not conve-

nient solution variables; because they are often cliscontinu-

ous (for example, when sources are present). Thus potential

functions are used to describe the magnetic field:

5= VXA. (1)
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~=–17*_2 (2)

Use of the time-integrated scalar potential assures that the

final matrix equation will be sparse, banded and symmetric.

This formulation has been incorporated into a general pur-

pose electromagnetic field analysis program, MS C/EMAS.

To obey Maxwell’s equations, discrete values of ~ and O

at predetermined grid points (degrees-of-freedom, or D OFS)

must obey the following matrix equation (5):

[+$-l-w{+}+[*1{+}
+ [+-l+{+}={*} (3)

This matrix equation is equivalent to Maxwell’s equations

in their complete and general form. The [Al], [B] and [K]

matrices represent dielectric, conductivity and permeability

properties, respectively. Materials may be anisotropic; and

in the case of magnetic materia~, nonlinear. The column

vector {u} represents unknown A and @ DOFS. The excita-

tion vector {P} is not used in resonant analysis.

An initial condition is also generated:

[M@l{i} = {P} + {Lmml} - [@Al{~}, (4)

.
where {p} represents charge density; {L,~~~ } represents

Neumann boundary conditions; and {~} represents an ini-

tial, divergence-free field distribution. This initial condition

is just Gauss’s law for electrostatics in matrix form.

Use of the vector potential brings with it some mathe-

matical difficulties. It is well known that Maxwell’s equa-

tions determine only the curl part of ~. Other parts, such

as the divergence of ~, are undetermined. In numerical

calculations these undetermined parts produce a singular

[K] matrix. For the particular case of eigenvalue analy-

sis, singular [K] produces a large number of spurious mode%

modes with near-zero frequencies that cannot be easily dis-

tinguished from physical modes (6). Divergence singularities

are removed by adding a penatty energy (7); so that [K] is

the sum of two parts:
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[K’”] Cx(v x i) . [V](v x x), (5)

[P’] lx Cw(v.X)2; (6)

where the penalty parameter a is dimensionless. In a “weak”

mathematical sense, the penalty energy requires the solution

to satisfy the Coulomb gauge. In terms of modes, the penalty

energy shifts divergence modes to higher frequencies.

Ideally, the divergence and curl parts of ~ are uncoupled;

so that physical (curl) solutions are not affected by the choice

of a. Due to practical element limitations, there is a weak

coupling (less than one part in 107) between divergence and

curl. This produces a small, unpredictable increase in the

resonant frequencies of physical solutions with increasing a.

Use of the time-integrated electric scalar potential has

an odd consequence; electrostatics is represented by a dy-

namic process. The initial potential + is determined by

the initial condition, Eq. (4). Subsequent behavior is deter-

mined from solutions to the dynamic matrix equation, Eq.

(3). Under electrost@ic conditions (~ = O, [1?]= O), the ini-

tial distribution of@ remains unchanged; so the conventional

electrostatic potential ~ = ~ is a time-independent function

of position (as expected). This behavior has a significant

effect on resonant analysis.

EIGENVALUE SOLUTIONS

With no conductivity ([/3] = O), no excitations ({P} =

O), and assuming ei’”t time dependence, Eq. (3) reduces to

an eigenvalue problem:

[ - (J:M + K]{&}= 0. (7)

In bounded problems, solutions are obtained only at discrete

eigenvalues w:. The associated eigenvectors {~~} are real.

When inhomogeneous dielectrics are present, the eigenvec-

tors must contain both ~ and @ DOFS in order to account

for the effects of electrical charge. Because potential func-

tions are used, there is no distinction between TE, TM and

hybrid modes; all mode types are obtained in a single calcu-

lation.

Electrostatic behavior is included in resonance problems

when @ D OFS are present. “Electrostatic” modes appear
.

at exactly zero frequency; with all A D OFS equal to zero.

These modes are orthogonal, linear combinations of electro-

static solutions of the matrix equation, Eq. (3); one mode

for each unconstrained ~ DOF in the model. It must be

emphasized: these are not “spurious” modes, They repre-

sent real, physical behavior. Since electrostatic behavior is

not of interest in microwave devices, these modes are usually

ignored.

The mode spectrum is shown schematically in Fig. 1.

Many “electrostatic” modes are present at exactly zero fre-

quency. Conventional high-frequency behavior is represented

by “microwave” modes, in which both @ and ~ are nonzero.

The frequency of these modes is determined mainly by so-

lutions to Maxwell’s equations; but can be changed by very

electrostatic
microwave divergence

~__iLl__LllL_
o frequency

Figure 1: The mode spectrum in resonant analysis involves

three types of modes: “electrostatic” modes, “microwave”

modes and “divergence” modes.

large values of the penalty parameter. “Divergence” modes

represent nonphysical behavior at higher frequencies associ-
.

at ed wit h the divergence part of A. The frequencies of these

modes increase roughly as the square root of the penalty pa-

rameter. The grouping of modes into these three main types

is t bought to be general; and, apparent 1y, occurs in all real

eigenvalue analyses based on this formulation.

THE MODAL TRANSFORMATION METHOD

To be useful, the physical solutions of the eigenvalue

problem, Eq. (7), must be: 1) easily distinguished from spu-

rious solutions, and 2) must be independent of the penalty

parameter. This is accomplished using a modal transforma-

tion method (8). First, “microwave” solutions to ECI. (7),

{~~ }, are determined. These modes are not adequate SOIU-

tions; because their frequencies depend slightly on a. How-

ever, they are ideal basis functions for expanding the actual

solutions because they are divergence-free. The act ual solu-

t ions {u} are expressed as a sum of “microwave” modes;

(8)

This expansion is substituted back into Eq. (7), and the

resulting (very small) eigenvalue problem is solved for the

modal amplitudes q.. The eigenvalues are the same as those

of the original problem, while the eigenvectors are recovered

through Eq. (8). During this second solution, the penalty

parameter is set to zero. As a result, the final solution is

independent of a.

EXAMPLES

The first example, a dielectric-loaded waveguide, illus-

trates two-dimensional cutoff frequency calculations in inho-

mogeneous waveguides. The second, a spherical resonator,

demonstrates mode calculations in three-dimensions. The

first few modes of each model were obtained using a Lanc-

zos eigenvalue algorithm. Perfectly conducting boundaries

were simulated by constraining the tangent components of

~ and @ to zero. In all cases, CO= VO = O; and the diver-

gence penalty parameter was 104. Results were later scaled

to MKS values. Plotting and data recovery were performed

using MS C/XL, a graphic pre- and postprocessor designed

for electromagnetic applications.



Figure 2: The electric field (a), vector potential (b) and scalar potential (c) in the HE12 mode of a dielectric-loaded waveguide.

Three-Layer Dielectric-Loaded Waveguide

A three-layer dielectric-loaded waveguide consists of a cir-

cular guide (radius= 1.27 cm) cent aining a hollow dielectric

rod (c = 37.6) in the region 0.4 cm < radius < 1,0 cm.

Approximately 450 6-node triangular elements were used to

represent the two-dimensional cross section.

The cutoff frequencies are shown in Table 1 for the first

ten modes. The error is also shown, relative to results pub-

lished by Lin, et, al. (9). In all cases, errors are less than

one per cent. Modes four and five are a degenerate pair of

physical modes not listed by Lin et. al.

Results for the third mode, HE12, are show: in Fig. 2.

The arrow plot of the electric field shows that E lies within

the plane; and is largest between the rod and the outer wall.

The hollow center also contains substantial electric fields.

For the same mode, arrow plots of ~ show little influence of

the dielectric. Instead, the effects of dipole charges at dielec-

tric boundaries are represented by the scalar potential, as can

be seen in the contour plot of ~. This is not surprising since,
+

under the Coulomb gauge, A represents divergence-free solu-

mo frequency relative type

(GHz) error

(%)

1 76.35937 -0.71 HEII

2 93.60601 +0.26 HE12

3 93.60793 +0.26 HE12

4 131.5472 ?

5 131.7642 ?

6 156.4698 -0.37 HE13

7 156.4715 -0.37 HE13

8 157.7712 +0.42 HEIS

9 157.7132 +0.42 HE13

O 163.7523 +0.36 HE14

tions to the wave equation, while @ represents electrostatic

solutions.

Spherical Resonator

A 1 mdiameter spherical resonator ismodeled~vith 768

hexahedron and pentahedron elements connected to 795 grid

points. The resulting eigenvalue problem involved 1901 un-

constrained DOFS, The desired modes were extracted using

a VAX 6000 computer (7 MIPS) in 742 CPU seconds.

Table 2 shows the resonant frequencies for the first eleven

modes, error relative to theoretical results (1 O), and mode

type. Higher-order modes show reduced accuracy; because

the spatial dependence of the fields is more rapid relative to

the fixed mesh density. We do not know the nomenclature

for the eighth mode; but it resembles higher-order modes

found in cylindrical resonators (10).

1 261,8659 +0.015 TMIOI

2 265.1345 +1.26 TMuJ1

3 265.9924 +1.59 TMIOI

4 367.4110 -0.56 TM201

5 370.4039 +0.25 TMxJl

6 373.8854 +1.19 TM201

7 373.8854 +1.19 TM201

8 375.0030 ? ?

9 438.2904 +2.21 TE*OI

10 438.9949 +2.38 TEIOI

11 438.9949 +2.38 TEIO1

Table 1: Cutoff frequency, relative error and mode type for Table 2: Frequency, error relative to theory, and mode type

the first ten modes of a dielectric-loaded waveguicle. for the first eleven modes of a spherical resonator.
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CONCLUSIONS

A comprehensive resonant analysis capability has been

derived from a general formulation of finite element field

analysis. By using vector and scalar potential functions

as solution variables, the formulation can represent arbi-

trary geometries containing inhomogeneous, anisotropic di-

electrics. All mode types are obtained from a single analysis

without spurious mode difficulties. Two types of physical

modes are found. “Electrostatic” modes represent electro-

static behavior at zero frequency, while “microwave” modes

represent high-frequency resonant behavior. Spurious “di-

vergence” modes are shifted to still higher frequencies (out

oft he range of interest) in a way that does not affect physical

modes. The primary applications are in the computer-aided

design of nonuniformly-loaded cavities and waveguides,

MSC/EMAS and MSC/XL are trademarks of The MacNeal-

Schwendler Corporation.
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